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LETTER TO THE EDITOR 

Free energy of a semiflexible polymer confined along an 
axis 

Theodore W Burkhardq 
Fachbereich Physik. Univenita-Gesamthochschule Essen, D-45117 Essen, Germany 

Received 24 July 1995 

Abstract A continuum model of a fluctuating semiflexible polymer chain confined along 
an axis is considered. In the regime of strong confinement. configurations with overhangs 
are negligible, and the partition function is determined by a partial differential equation. An 
exhemum principle for eigensolutions is formulated. The exad solution of the differential 
equation for a polymer in a harmonic potential is given. A lower bound for the confinement 
free energy of a polymer in a tube is obtained. 

The statistical properties of a semiflexible polymer in a tube have been studied with several 
equivalent theoretical approaches [l-51, reviewed in 161. For a cylindrical tube of diameter 
D the confinement free energy per unit length Af is given by 

in the regime P >> D of strong confinement. Here P = K/kBT is the persistence length, 
where K is the bending modulus. The dimensionless constant c is not known exactly but 
was estimated as 2.46f0.07 in recent computer simulations [71. From dimensional analysis 
Af  has the form kBT/A, where A is a length. As emphasized by Odijk [3, 61, the relevant 
physical length A in equation (I) for a strongly confined polymer is not the persistence 
length P but the collision length or typical distance A - P1/3D2’3 between points where 
the polymer touches the tube. 

In specifying polymer configurations, it is-convenient to use cylindrical coordinates 
( x ,  y, t) = (T, t). with the t axis corresponding to the symmetry axis of the tube or 
confining potential. In the regime of strong confinement, i.e. for sufficiently stiff polymers 
in sufficiently strong confining potentials, configurations with overhangs are negligible, and 
T may be regarded as a single-valued function of t, with ((drldt)’) << 1. The partition 
function of a strongly confined polymer with axial length r is given by the path integral 

Z(T, U; TO, 210; 2 )  = D’rexp - df - P - + V(T) s I 1‘ [: (3 11 (2) 

where T and ‘11 = dr/dt denote the displacement and slope of the polymer at f, and TO and 
uo the same quantities at t = 0. The two terms in the exponential function represent the 
bending energy and the potential energy leading to confinement, both divided by kBT. 

t Permanent address: Department of Physics, Temple University, Philadelphia, PA 19122. USA. 
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The path integral for a flexible polymer under tension or 'directed polymer' is the same 
as in (2)  except that (d2r/dtZ)2 is replaced by (dr/dt)2. The partition function Z(T, TO; t) 
of the directed polymer satisfies Schrodinger's equation [8-101. Equation (2)  leads to the 
more complicated partial differential equation [ 11-14] 

I [ ~ + u - v r - - v u ~ + v ( r )  1 z (T,u ;T@,m; t )  = o  
2P (3) 

with boundary equation 

Z(T, U; TO, u o ;  0) = 8(T - TO)S(U - m) (4) 

at t = 0. 
In the case V(T) = 0 of a free polymer in the unbounded space ( x ,  y. t),  the partial 

differential equation (3) can be readily solved [I41 by Fourier transformation. The exact 
solution [IS] for a polymer confined to the half space x > 0 is considerably more complex, 
since the hard-wall boundary condition cannot be simply satisfied by the method of images. 
Polymer configurations with a discontinuity in slope cost an infinite energy according to 
(2) and are completely suppressed. This implies [U] that Z ( T ,  U: TO. uo; t) vanishes at a 
hard wall for U. n 0. This requirement and the differential equation (3) determine the 
non-zero but unspecified value of Z(T, U; TO. uo; r) on the boundary for U. n < 0. Here n 
is a unit vector perpendicular to the boundary surface and directed into the region accessible 
to the polymer. 

In this letter the theoretical approach to strongly confined semiflexible polymers based 
on the partial differential equation (3) is explored. In general, the equation is difficult to 
solve in a bounded geometry due to the correlation between T and U coming from the 
second term. An extremum principle for eigensoiutions is formulated. It may be used to 
optimize approximate calculations of the free energy of confinement. The exact solution 
of equations (3) and (4) for a polymer confined by a harmonic potential V(T) = $br2 is 
given. This is an instructive example, and the results for arbitrary length t may be useful 
in finite-size applications, for example, to liquid crystals. As in the analysis of the quantum 
harmonic oscillator, the solution can be derived using raising and lowering operators. The 
case of a polymer in a tube is briefly considered. It is shown that the path integral (2)  
implies expression (1) for the confinement free energy. The bound c > $ is derived, using 
the results for the harmonic potential. 

In analysing long polymer chains it is convenient to look for exponentially decaying 
solutions of equation (3) with the form @(T, U) exp(-Et). The eigenfunctions @,, and 
eigenvalues E, satisfy 

1 7i = U. V, - -Vu2+ V(T). 
2P (5) (H- E")@"(T,u) = O  

In the long polymer limit the partition function and the confinement free energy per unit 
length are given by 

Z(T, U; TO, UO; r )  = @o(T, U)@O(VO. t --f cm (6) 

where Eo is the eigenvalue with the smallest real part. The eigenvalues E, are, in 
general, complex. However, for a non-negative confining potential, EO is positive and 
non-degenerate, due to the real, non-negative argument of the exponential function in the 
path integral (2). 
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It is convenient to define an inner product ( F ,  G) of two functions F ( r .  U), G(r,  U) 
bY 

( F ,  G) = /d2r  / dZu F ( - r ,  u)G(r,  U) (8) 

with -T instead of r in the argument of the function on the left. With this definition 
the property (@,, X @ d  = ($h X@,) follows, for reflection-invariant potentials V ( r )  = 
V ( - r ) ,  from integration by parts. This, together with equation (5), establishes the 
orthogonality (@,, @") = 0 of the eigenfunctions for E,  # E,. These results hold both for 
soft potentials and the hard-wall boundary condition discussed above. 

Since the partial differential equation (5) for the eigenfunctions is, in general, intractable, 
it is useful to have a variational principle to optimize approximations. It is simple to show 
that the eigenvalues E. and eigenfunctions Ilr, defined by equation (5) correspond to extreme 
values of the functional' 

In quantum mechanics any reasonable trial wavefunction furnishes an upper bound to the 
exact energy of the ground state. However, due to the special inner product (8) in (9) it is 
not clear that EO and $0 correspond to an absolute minimum of ReE[Y]. The question of 
the nature of the extrema will be taken up again below. 

For the harmonic confining potential V ( r )  = fbr' the path integral (2)  can be evaluated 
exactly. As for the quantum mechanical oscillator [SI the path integral is determined by 
the 'classical' path r*(t) that minimizes the action. This may be seen by substituting 
r(t) = r*(t) + <(t)  in (2), where r* satisfies the differential equation 

d4r* 
P -  +br* = 0. 

dt4 

t̂  i i . i  
Jz Jz Jz 4 ch=cosh- Sh=sinh- c=cos-   sin- 

and N is a dimensionless normalization constant. 
Comparing equations (11H15) in the long polymer limit i >> 1 with (6), (7) yields 

_-  *' - Eo = &(b/P)"4 
b T 
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@o(r, U) = 2N1/2(Pb)'/2exp - J ( + ~  + ii') + B . &] . (17) [ l 2  
The positive correlation between T and U in +O has a simple physical interpretation, 
reflecting the tendency of the polymer to lie near the r axis on the average and slope 
outwards from the axis to a given endpoint T. From equations (11)-(15) the explicit form 
of the eigensolutions @"(T, U) exp(-E,t) is apparent. One sees that the E. are complex 
and degenerate, in general, and equally spaced with separation exp(hi~/4)(b/P) ' /~ .  The 
@"(T, U) have the form of polynomials in r and U multiplying @o(r, U). 

The approximation of neglecting overhangs and a constraint on the total length in the 
path integral (2) is self-consistent as long as ((dT/dt)*) << 1. From equation (12) one sees 
that thii requires Pb'13 >> 1. This inequality defines the regime of strong confinement for 
a semiflexible polymer in a harmonic potential, analogous to the regime PD-' >> 1 for a 
polymer in a tube described by (1). 

Equations (2). (7), and (16) imply (kBT)-'aAf/ab = k(r2) = 2-3/2b-3/4p-'/4. Using 
this result to eliminate the potential parameter b in (16) gives 

for the confinement free energy per unit length. Note that this expression has the same 
general form as (1). The general form is independent of the details of the confining potential. 
However, the value of the dimensionless constant c in (1) does depend on the particular 
potential. 

Since the eigenvalues E. for the harmonic confining potential are equally spaced, it is 
natural to look for an equivalent solution in terms of raising and lowering operators. It is 
straightforward to show that the differential operator 1-I in (5) with V ( r )  = 4brZ can be 
written in the form 

I 14 
E = ( $ )  (R .L+R* .L*+JZ)  

where 

and R" and L* are their complex conjugates. Here R and R* are raising operators that 
shift the eigenvalue by exp(hi~r/4)(b/P)'/~, and L and C* are lowering operators that shift 
the eigenvalue by - exp(~kix/4)(b/P)'/~. This follows from the commutation relations 
[R*, RI = [L*. LI = [L*, RI = 0, [L, RI = exp(ir/4)(2$ + QQ) and their complex 
conjugates, which imply 

[E, R] = dn'4(b/P)''4R [E. L] = -&*/4(b/P)"4L. (22) 

The explicit expressions for Eo and @o(T, U )  in equations (16) and (17) may be derived 
from (21) and the condition L+o = L*+o = 0 that the two lowering operators annihilate 
the ground state. It is much easier to obtain the asymptotic properties in the long chain 
limit this way than by evaluating the complete path integral. 

Of course, the simplest method of all [l,  7, 161 for calculating the free energy per 
unit length of a semiflexible polymer confined by a harmonic potential is to impose the 
periodic boundary condition r(t) = r(t + L), transform the action in the path integral 
(2) to the quadratic diagonal form 4 c , , (Pq4 + b)a9 . a, by the linear transformation 
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~ ( l )  = L-'D E, a,e'@', and then use the equipartition theoremt $(Pq4+b) (aq  .a-,) = 1. 
However, it is not easy to obtain the results (1 IHl5) for finite chains this way, and for non- 
harmonic confining potentials, the action cannot be diagonalized by a linear transformation. 

Since the question as to the nature of the extrema of E[Y] in (9) has not been settled, it 
is useful to check the extremum principle for the harmonic confining potential V ( r )  = fbr'. 
For the Gaussian trial function Y(+, U) = exp(-& - O&' + y e .  &), 

Here a, 0, and y are real and satisfy a6 > y2 /4  in order that \Ir remain finite in the 
limit e, 8 + CO. The only extremum of €(a, 8, y )  in the allowed domain of variational 
parameters is a relative minimum E = -&(b/P)'14 at 01 = .B = 2-'12, y = 1, corresponding 
to the exact results for EO and q0 in (16) and (17). Note that a lower boundary minimum 
E = 0 is attained for 01 -+ CO, ,9 -+ 0 in the subspace y = 0, in which + and U 
are uncorrelated. Thus in the space of parametem (01. 6, y) ,  @o corresponds to a relative 
minimum but not an absolute minimum. 

For an arbitrary central confining potential V ( r )  that is non-negative and vanishes for 
r + CO, EO = €[eo] > 0. This is a consequence of the non-negative action in the path 
integral (2). For a trjal function of the form Y(T, U) = f ( r )g(u)  

1 J," du ug'(u)' 6 rV(r)f(r)'  + E [ f g 1  = ir du ug(u)2 Jb" dr rf(r)* 
One can always choose f ( r )  and g(u) so that &[fg] -+ 0, as in the previous paragraph. 
Since E[$o] > 0, $0 clearly does not correspond to an absolute minimum of E[Y]. It 
should be noted that the trial function Y(+, U) = f ( r ) g ( u )  is unphysical, since it neglects 
the correlation between T and U due to the first term in 'H in equation (5). For trial functions 
with this form no conaibution from the first term in H appears in E[Y].  

We now consider the semiflexible polymer confined in a tube of radius R = D / 2 .  In 
terms of the dimensionless variables 

(W F R-'+ ij = p'/3R-'/3u f =  p-'/3R-2/3t 

which eliminate the constants P and R in the path integral (2),  the differential operator 'H 
in equation (5) becomes 

31 = p-1/3R-2/3[ i j .  Vi - iV-2  2 "  + e(+)] (26) 
where e(?) is infinite for IF1 > 1 and vanishes for IF1 < 1. From this expression and 
equation (7) it is clear that the confinement free energy Af = kBTEo has the expected 
form (1). The approximation of neglecting overhangs and a constraint on the total length 
in the path integral (2) is self-consistent as long as ((dr/dt)2) << 1. From equation (25) 
one sees that this requires P >> D, as stated below equation (1). 

The value of the constant c in equation (1) can be obtained, in principle, by solving 
the differential equation ('H - Eo)$o = 0 with the hard-wall boundary condition mentioned 
below (equation (3)). So far an exact solution with hard-wall boundary conditions has only 
been obtained for the half-space geometry [15]. Work on extending this solution to a tube 
with a rectangular cross section is in progress. 

Further work is also required to see whether reliable estimates of c in (1) can be obtained 
with the extremum principle introduced above. The question of the nature of the extrema 

t Note that for the harmonic potential Helfrich's assumption [I ,  71 that all the modes are affected equally by the 
confinement. i.e. that (a, . - (4 . aq);L is independent of q, is exactly fulfilled. 



L634 Letter to the Editor 

has not yet been completely settled, and in devising a trial function one must take the 
hard-wall boundary condition, discussed below equation (3). into account. 

Finally, we show that a lower bound for c in (1) follows from the results for the harmonic 
potential given above. Let us denote the path integral (2) for a polymer in a tube by Z(Nh), 
the path integral with the same endpoints T, U, ro, u g  and a harmonic confining potential by 
Z@,), and the path integral for a polymer in a tube with, in addition, a harmonic potential 
within the tube by Z(Nk+h). Since the paths that contribute to Z(Nhthw) are a subset of 
the paths contributing to Z@ar), 

where the restriction I T /  < D/2 for the polymer in the tube has been used. Together with 
equations (7) and (16) this inequality implies 

for the confinement free energy per unit length. 
Equation (28) also follows from the assumption that the exact eigensolution *tw) for 

the harmonic potential yields a lower value of Emu)[@], defined by (5) and (9), than the 

(29) 
which, using (7) and (16), is equivalent to (28). 

There is a comparable bound in quantum mechanics. Using the ground state of a particle 
in a box of width D as a trial function in a variational estimate of the ground state energy 
of the one-dimensional harmonic oscillator, one obtains 

exact @$“” for the polymer in a tube, i.e. E@’”’[@f”)] < (tube)], ~ h ’  IS implies . 

EO m) < Erh) + t!(T2)(Nbc) < EANNbs) + $D2 

EoWx) > E?) - imoZD2 (30) 

in analogy with (28) and (29). Substituting E,””’ = in equation (30) and maximizing 
the right side with respect to o gives E?) > h2/(ZmD2). The exact result E?) = 
n2h2/(2mD2) is consistent with this bound but not very close to it. 

Choosing b to maximize the right-hand side of (28) for fixed P and D, one obtains 

or c > 
Dijkstra et a1 [7] is consistent with this bound. 

It is a pleasure to thank Hans-Werner Diehl and coworkers for hospitality in Essen and 
useful comments. I am also grateful to Klaus-Dieter Harms and Hans van Leeuwen for 
helpful discussions. The financial support of the Alexander von Humboldt-Stiftung is greatly 
appreciated. 

in equation (1). The estimate c = 2.46 * 0.07 from the computer simulations of 
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